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Abstract. Yang–Mills theory undergoes a transition from a confined to a deconfined phase in the interme-
diate temperature regime, where perturbation is not applicable. In order to approach this phase transition
from the high temperature side we study the effective action for the eigenvalues of the order parameter,
the Polyakov loop. By means of a covariant derivative expansion we integrate out fast varying quantum
fluctuations around background gluon fields and assume that these are slowly varying, but that the am-
plitude of A4 is arbitrary. Our results can be used to study correlation functions of the order parameter
at high temperatures.

1 Introduction

The equilibrium behavior of quantum field theories at fi-
nite temperature is described through the grand canonical
partition function. This introduces a compactification of
the imaginary time direction in the Euclidean formulation
of the theory. The partition function of a statistical system
is defined as a sum over physical states n:

Z =
∑

nphys

〈n|e−β H|n〉, (1)

where β = 1/T and H is the Hamiltonian of the system.
In Yang–Mills theory physical states are those which are
gauge-invariant, i.e. invariant under gauge transformation
of the gluon fields:

Aµ(x) → [Aµ(x)]Ω(x) = Ω(x)†Aµ(x)Ω(x) + iΩ(x)† ∂µΩ(x),
Ω(x) = exp{i ωa(x)ta} . (2)

The partition function in its Euclidean-invariant form is
given by

Z =
∫
DAµ exp

{
− 1

4g2

∫ β= 1
T

0
dt

∫
d3xF a

µνF
a
µν

}
. (3)

Due to the compactified time direction the gluon fields
obey periodic boundary conditions in time

Aµ(0, x) = Aµ(β, x). (4)

There are special gauge transformations, which leave the
periodic boundary conditions for the gluons intact, but
which themselves are only periodic up to an element of
the center of the gauge group. The center group Z(Nc) is
a discrete one and has the elements

zk = e2πik/Nc where k ∈ {0, Nc − 1}. (5)

In particular for the gauge group SU(2), which we will use
for our calculations, the elements of Z(2) are

z0 =

(
1 0
0 1

)
, z1 =

(
−1 0
0 −1

)
. (6)

The center group is of relevance for a description of the
order parameter of the confinement-deconfinement phase
transition. It is given by < TrP > where P is the Polyakov
line

P (x) = P exp

(
i

∫ 1/T

0
dtA4

)
. (7)

Here P stands for path ordering. The Polyakov line is not
invariant under Z(Nc) transformations but transforms as

P (x) → z−1
k P (x). (8)

One sees immediately that a manifest Z(Nc) symmetry
implies < TrP >= 0. This corresponds to the confined
phase. If < TrP >�= 0 then the symmetry must have been
broken spontaneously. This corresponds to the deconfined
phase. (In the presence of fermions the symmetry gets bro-
ken explicitly.) At very high temperatures the potential
energy of the Polyakov line (or of A4) has its zero-energy
minima for values of P (x) at the center of the gauge group
(or for quantized values of A4). High temperature pertur-
bation theory hence corresponds to the system oscillat-
ing around these trivial values of the Polyakov line, i.e.
< TrP >�= 0. As the temperature decreases, however, the
fluctuations of the Polyakov line increase and eventually at
the critical temperature Tc the system undergoes a phase
transition from a deconfined to a confined phase which has
< TrP >= 0. In order to approach this phase transition
from the high-temperature side, one needs to study the
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Polyakov line in its whole range of possible variation. In
our recent paper [1] we worked with static and diagonal
A4 gluon fields and the gauge group SU(2). In this case
the Polyakov line

P (x) = exp
(
i
A4(x)
T

)
(9)

has the gauge invariant eigenvalues

e±iπν where ν =
√
Aa

4A
a
4/2πT. (10)

We assume that the gluons are varying slowly, but we
allow for an arbitrary amplitude of the A4 fields. We then
find the non-trivial effective action for the eigenvalues of
the Polyakov line, interacting in a covariant way with the
spatial gluon fields Ai.

2 Energy scales at high temperatures

Since the gluon fields are periodic in time one can make a
Fourier decomposition:

Aµ(t, x) =
∞∑

k=−∞
Aµ(ωk, x) eiωkt, ωk = 2πk T, (11)

where the Matsubara frequencies ωk are the quantized val-
ues for the energies. The energy scales that show up in
the theory are at the tree level the temperature T , on the
quantum level the Debye mass scale gT which arises from
screening effects for the color-electric gluons, and g2T ,
which is the (non-perturbative) scale of the color-magnetic
gluons. The first step on the way to an effective theory is
to integrate out the non-zero Matsubara modes at the tree
level, since they become very heavy at high temperatures.
This reduces the original 4D Euclidean symmetry to a 3D
static one. The next step is to include quantum fluctua-
tions. There all Matsubara modes show up in loops again
and produce infinitely many effective vertices. In [1] we
obtained all these vertices, but restricted to low momenta
p < T .

3 The 1-loop action

We use a background field method where the gluon fields
are decomposed into a static background field (denoted by
a bar) and time-dependent quantum fluctuations around
them:

Aµ = Āµ + aµ. (12)
For the quantum fluctuations we choose the background
Lorenz gauge Dab

µ (Ā) ab
µ = 0, where Dµ is the covariant

derivative in the adjoint representation. A one loop calcu-
lation corresponds to expanding the action to quadratic
power in aµ. This results in the following effective theory
for the background Ā fields:

Z(Ā) = eS̄

∫
DaDχDχ+exp

[
− 1

2g2(M)
∫
d4xab

µW
bc
µνa

c
ν−
∫
d4xχ+aD2χa

]
. (13)

Here χ, χ+ are the ghost fields and

S̄ = − 1
4g2(M)

∫
d4xF a

µν(Ā)F a
µν(Ā) (14)

is the action of the background fields. The quadratic form
for aµ is given by

W ab
µν = −[D2(Ā)]abδµν − 2facbF c

µν(Ā) . (15)

Integrating out a, χ and χ+ provides us with the 1-loop
action

S1−loop = log (detW )−1/2 + log det
(−D2) . (16)

Since the only gluon fields which are left are the back-
ground fields we will omit the bar from now on.

4 Gradient expansion of S1−loop

For the background A4(x) fields one can always choose a
gauge where they are static and diagonal in the funda-
mental representation, while the spatial Ai components
are generally speaking time dependent. We shall, how-
ever, assume time-independence for all the background
components. The prize for this is the loss of invariance
under certain residual time-dependent gauge transforma-
tions, which we shall discuss later on.

We then expand the 1-loop action in powers of the spa-
tial covariant derivative Di and obtain the kinetic energy
by identifying the electric and magnetic fields as

[Di, D4] = −iFi4 = −iEi,

Bi =
1
2
εijkFjk =

i

2
εijk[Dj , Dk]. (17)

For SU(2) there are only two independent color vectors
in the electric (magnetic) sector, Ei (Bi) and A4, and we
thus expect the following structure for the kinetic energy
to quadratic order in the electric and magnetic fields:

S1−loop =
∫
d3x

T

[−T 4 V (A2
4)+E

2
i f1(A

2
4) +

(EiA4)2

A2
4

f2(A2
4)

+B2
i h1(A2

4) +
(BiA4)2

A2
4

h2(A2
4) + . . .

]
. (18)

The potential energy V (A2
4) has long been known [2,3], the

functions f1,2, h1,2 from the kinetic energy were obtained
in [1].

4.1 The proper time formalism

The functional determinants in the 1-loop action eq. (16)
are UV divergent which reflects the running of the cou-
pling constant. As a regularization we hence introduce a
Pauli-Villars cutoff M . In addition we want to normal-
ize the functional determinants with respect to the free
theory. This can be done with a method introduced by
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Schwinger [4], which yields for the ghost functional deter-
minant

log det(−D2)Norm,Reg ≡ log
det(−D2

µ)
det(−∂2

µ)
det(−∂2

µ +M2)
det(−D2

µ +M2)

= −
∫ ∞

0

ds

s
Sp
[(

1 − e−sM2
) (

esD2
µ − es∂2

µ

)]
, (19)

where Sp denotes a functional trace. The trace can be
taken by inserting a plane wave basis:

log det(−D2)Norm,Reg =

−
∫
d3x

∞∑

k=−∞

∫
d3p

2π3

∫ ∞

0

ds

s

(
1 − e−sM2

)

×Tr
{
exp

[
s(A2 + (Di + ipi)2)

]

−exp
[−s(ω2

k + p2)
]}
, (20)

where we defined the adjoint matrix Aab = facbAc
4 +

iωkδ
ab. A similar result can be found for the ghost func-

tional determinant, see [1] for details.

4.2 The effective potential

We find the potential V (A2
4) at zeroth order in Di. This

corresponds to E = B = 0 and

det− 1
2Wµν = det−2(−D2

µ). (21)

We choose the gauge where A4 is diagonal in the funda-
mental representation:

Aa
4 = δa3φ = δa32πT ν , ν =

√
Aa

4A
a
4

2πT
. (22)

The resulting potential is well known [2,3] and reads

V =
1

3(2π)2T 4 φ
2(2πT − |φ|)2|mod 2πT

=
(2π)2

3
ν2(1 − ν)2|mod 1. (23)

It is shown in Fig. (1). The potential is clearly periodic in ν
with period one, which means that it is center-symmetric.
At the minima of the potential A4 has quantized values.
For the Polyakov line this means that it assumes values of
Z(2). In particular for SU(2) with

P = exp
(
iAa

4
τa

2T

)
= cos

|A4|
2T

+ i
Aa

4τ
a

|A4| sin
|A4|
2T

, (24)

the minima correspond to

ν = 0, 2, . . . −→ P =

(
1 0
0 1

)
, (25)

ν = 1, 3, . . . −→ P =

(
−1 0
0 −1

)
. (26)

1 2

Fig. 1. The periodic potential V with period 1 in units of ν.

At the minima one hence has < Tr P >�= 0, and at high
temperatures perturbation theory is performed around one
of these center group values. At lower temperatures, how-
ever, the fluctuations of < Tr P > increase and eventually
at the phase transition point < Tr P >→ 0. It is hence
of interest to study the fluctuations of the Polyakov line
beyond the perturbative minima. This is tantamount to
calculating the kinetic energy, which we shall do by means
of an expansion in higher powers of the covariant deriva-
tive.

4.3 Higher powers of the covariant derivative

For the kinetic energy we encounter structures of the type

exp s
(A2+(Di+ipi)2

)
, Aab = facbAc

4 + iωkδ
ab (27)

which we have to expand in powers of Di. This can be
done by using

eA+B = eA +
∫ 1

0
dα eαAB e(1−α)A (28)

+
∫ 1

0
dα

∫ 1−α

0
dβ eαAB eβAB e(1−α−β)A + . . . ,

and dragging B = Di, D
2
i to the right with the help of

[B, eA] =
∫ 1

0
dγ eγA [B,A] e(1−γ)A. (29)

Then we have to evaluate all the integrals over α, β, γ, . . . ,
p, s and sum over the Matsubara frequencies ωk = 2πkT .
This should be done separately for the ghost and gluon
determinants. For the electric sector one has to go to sec-
ond order in Di and for the magnetic sector to the quartic
order. We will only show the results of the calculations.
The details can be found in [1].

4.4 Results for the electric sector

We indeed find the structure for the kinetic energy that
was outlined in eq. (18) with the functions given by

f1(ν) =
11

48π2

[
2 (logµ− γE) − ψ

(
−ν

2

)
− ψ

(ν
2

)
+

20
11ν

]
,

ν =

√
Aa

4A
a
4

2πT
(30)
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Fig. 2. The function f1(ν) with the constant part subtracted,
in different intervals.

f2(ν) =
11

48π2

[
ψ
(
−ν

2

)
+ ψ

(ν
2

)
− ψ (ν) − ψ (1 − ν) − 20

11ν

]
.

(31)

Here ψ is the digamma function,

ψ(z) =
∂

∂ z
logΓ (z) , (32)

γE is the Euler constant and µ is a UV cutoff that we
introduced in the sum over Matsubara frequencies. It is
related to the Pauli-Villars mass as

µ =
M

4πT
eγE . (33)

This scale has been previously found in [5] for the run-
ning coupling constant in the dimensionally reduced the-
ory, and our result agrees. It should be noted here that the
above results are valid for 0 ≤ ν ≤ 1. In other intervals
the functional forms of f1 and f2 are different. We show
the results for f1 for a broader range of ν in Fig. (2). One
can clearly see that this result is not Z(2) symmetric, the
same is true for f2. However, one particular combination,
namely

f3(ν) ≡ f1(ν) + f2(ν)

=
11

48π2 [2 (logµ− γE) − ψ (ν) − ψ (1 − ν)]

(34)

turns out to periodic. We plot it in Fig. (3). The reason
for this is the following: We chose the gauge where A4
is static and diagonal in the fundamental representation.
This leaves certain residual gauge symmetries:

Aµ → S†AµS + iS†∂µS,

S(x, t) = exp
{

−i τ
3

2
[α(x) + 2πtTn]

}
. (35)

Our invariants in the electric sector can be expressed as

Ea
i E

a
i f1 +

(Ea
i A

a
4)2

Ab
4A

b
4
f2 = E

‖
i E

‖
i f3 + E⊥

i E
⊥
i f1 (36)

1 2 3

Fig. 3. The symmetric function in f3, h1,2 without the con-
stant part, in different intervals.

where E‖
i E

‖
i = (E1

i )2 + (E2
i )2 and E⊥

i E
⊥
i = (E3

i )2 denote
the structures parallel and orthogonal to A2

4.
The time-dependent gauge transformations eq. (35)

now introduce large time derivatives in the A1,2
i but not in

the A3
i fields. Since our background fields are static we do

not have invariance under eq. (35). The time-dependence
enters in E⊥

i E
⊥
i , but not in E

‖
i E

‖
i . Hence one should

not expect gauge-invariance in the structure E⊥
i E

⊥
i f1,

since it is only quadratic in Ȧ1,2
i . However, even for time-

dependent background fields one would have to sum over
all powers Ȧ1,2

i /T . This is a challenging problem beyond
the scope of this work.

4.5 Results for the magnetic sector

In order to obtain the functions h1,2 from eq. (18) we have
to go to quartic order in Di. At this order there are also
mixing terms between the electric and the magnetic field.
We ignore these since we are only interested in the kinetic
energy in the magnetic sector. Again the functional form
of h1,2 depends on the interval that we choose for A4. For
0 ≤ ν ≤ 1 we find

h1(ν) =
11

96π2

[
4
(

log
M

4πT
+
γE

2

)
− ψ (ν) − ψ (1 − ν)

]
,

(37)

h2(ν) = − 11
96π2 [2γE + ψ (ν) + ψ (1 − ν)] . (38)

In Fig. (3) we plot the constant part (which is the same
as for f3) for different intervals. The result is obviously
center-symmetric.

4.6 Renormalization

The functions f1 and h1 are UV divergent, they contain
the Pauli-Villars cutoff M in the subtraction scale µ, see
eq. (33). This divergence is expected and necessary to can-
cel the tree level divergence from the running coupling
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constant:

− F a
µν F

a
µν

4g2(M)
= −F a

µν F
a
µν

11
3

Nc
1

32π2 log
M

Λ
. (39)

If we evaluate the coupling constant at the scale M and
add the tree level action eq. (39) to our 1-loop action, then
we obtain a finite result. In the effective action the scale
M in µ gets replaced by Λ.

5 Comparison to previous work

In reference [6] a covariant derivative expansion of the 1-
loop Yang-Mills action is performed. While we keep all
powers of the background A4 field the author of [6] goes
only to quadratic order. For a comparison we have to ex-
pand our functions f1,2 and h1,2 to quadratic order in ν
and we find that the results agree.

We mentioned in the section on the electric sector that
one combination of our functions, namely f3 = f1 + f2 is
Z(2) symmetric. This function has been obtained in [7]
in the context of a calculation of the interface tension of
Z(N) instantons, and our result again agrees.

6 Summary

In our recent paper [1] we studied the effective action for
the eigenvalues of a static SU(2) Polyakov line at high
temperatures. In the T → ∞ limit dimensional reduc-
tion takes place and perturbation theory works well. The
Polyakov loop has values at the center of the gauge group.
If one lowers the temperature, however, the fluctuations

of the Polyakov loop around these perturbative values in-
crease. We studied the fluctuations of a static P in the
whole range of its possible variation and found the 1-loop
effective action for its eigenvalues, interacting in a covari-
ant way with the Ai fields. We found that while the kinetic
energy in the magnetic sector is center-symmetric, the ki-
netic energy in the electric sector is not. If one wishes to
preserve this symmetry one would have to sum over all
powers of the more general time-dependent electric field.
For small values of A4 all functions are singular and be-
have as 1/A4, which is due to the contribution of the zero
Matsubara frequency.
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